
Secure Systems
Editor: Sean W. Smith, sws@cs.dartmouth.edu

72	 Published by the IEEE Computer Society ■ 1540-7993/08/$25.00 © 2008 IEEE ■ IEEE Security & Privacy

Revealing Packed Malware

Wei Yan

Trend Micro

Zheng Zhang

McAfee

Nirwan
Ansari

New Jersey
Institute of
Technology

T
he past few years have witnessed a significant

increase in malware threats to computer users,

threats that also pose a serious risk to the Inter-

net’s integrity. Malware exploits software vul-

nerabilities to compromise computers and help attackers steal

users’ private data. To evade mali-
cious content detection, malware
authors use packers, binary tools that
instigate code obfuscation. By using
executable packers, modern mal-
ware can completely bypass per-
sonal firewalls and antivirus (AV)
scanners. Thus, security research-
ers are facing a great challenge in
overcoming malware’s complex-
ity. Reverse engineering (RE) has
become an important approach to
analyzing a program’s logic flow
and internal data structures, such
as system call functions. Security
researchers and AV products must
be able to unpack and inspect the
payloads hidden within the packed
programs using RE tools.

The packer problem
Packers are software programs
that compress and encrypt other
executable files in a disk and re-
store the original executable im-
ages when the packed files are
loaded into memories. A packed
file is a type of archived file, so we
can’t say that just because a file is
packed, it’s bad. Some commercial
packers help protect Windows ap-
plications against modern cracking
tools by putting those applications
into a strong protection “shell.”
(Anticracking technology includes
encrypting code areas, verify-

ing licenses, and protecting codes
from decompiling.) Software
vendors aiming to save storage
space also use packers to compress
their products, which can reduce
download time and save custom-
ers Internet bandwidth.

However, viruses have used
packers widely to avoid detec-
tion, and packers are increasingly
incorporated into some malware
families. Reportedly, among 735
malwares collected for the Wild-
List in March 2006, more than
92 percent were packed by cryp-
ters and packers from 30 different
families.1 AV vendors must miti-
gate an astronomical number of
packers every day.

To identify known malware,
existing commercial security ap-
plications search a computer’s
binary files for predefined signa-
tures, but obfuscated viruses use
software packers to protect their
internal code and data structures
from detection. AV scanners act
like file filters, inspecting sus-
picious file loading and storing
activities, but with obfuscated
content, malicious programs can
bypass AV scanners and are ulti-
mately unpacked and executed in
the victim system. If malware in-
tends to infect more files or propa-
gate to other computers, it might

re-encrypt itself to bypass the AV
filter again.

Gabor Szappanos studied pos-
sible approaches for blacklisting
custom packers that only mal-
ware uses.2 However, AV scan-
ners must still unpack and scan
the internal original content for
samples packed by unknown or
“grey” packers, which both good
and bad files could potentially
use. AV scanners will ideally de-
tect real viruses within packed
files no matter which packers
attackers have used, but a false
positive will occur if a packed file
has no Trojan but is detected as
malware by the scanner. To de-
crease the false positive rate, AV
scanners must be able to unpack
the samples and retrieve the un-
packed data. Packed malware
must unpack itself at runtime be-
fore it executes, and so security
researchers can use RE tools to
find the exact moment and loca-
tion where the original data will
be uncompressed and available.
However, AV vendors lack the
time to learn how each packer
works. Consequently, some AV
scanners simply report all execut-
able files compressed by the same
packer as viruses, causing false
alarms. AV vendors must consider
their legal liability and the com-
pensation the benign compressed
executables might require in the
event of false positive damage.

How packers work
Executable files are specially for-
matted file objects that operating
systems understand and execute.
Modern executable formats in-
clude Portable Executable (PE)

Secure Systems

	 www.computer.org/security/ ■ IEEE Security & Privacy� 73

format3 for Windows, Executable
and Linkable Format (ELF) for
Linux, and Mach Object (Mach-
O) for Mac OS. Here, we’ll fo-
cus on the PE format because it’s
the most popular format for ex-
ecutables, libraries, and drivers in
Windows. PE tools facilitate easily
viewing, analyzing, and editing
WIN32 PE files.

A PE file comprises various
sections and headers that describe
the section data, import table, ex-
port table, resources, and so on.
As Figure 1 shows, a PE file starts
with the DOS executable header,
followed by the PE header, which
begins with the signature bits
“PE.” The PE header also includes
some general file properties, such
as the number of sections, ma-
chine type, and time stamp. The
optional header contains several
important information segments
and is followed by the section table
headers, which summarize each
section’s raw size, virtual size, sec-
tion name, and so on. Finally, at
the end of the PE file is the sec-
tion data, which contains the file’s
original entry point (OEP)—that is,
the entry point where file execu-
tion begins. To search a PE file for
malware, a scanner typically scans
the segments for the known signa-
tures at certain offsets from OEP.

Most PE packers work only
on executable files and dynamic
link libraries (DLLs). They can be
written in different programming
languages, such as C++, Delphi,
Visual Basic, or even Assembly.
Aside from shrinking the origi-
nal file size, packing is an efficient
way to obfuscate a file’s original
contents, and as of publication
time, packers are malware authors’
favored binary tools for obscuring
their codes.

Code obfuscation has evolved
from simple compression/encryp-
tion to polymorphism/metamor-
phism and finally to packing.
Based on their purposes and be-
haviors, we can broadly classify
packers into four categories:

Compressors shrink file sizes
through compression with little
or no anti-unpacking tricks.
Popular compressors include the
Ultimate PE Packer (UPack;
www.wex.cn/dwing), Ultimate
Packer for Executables (UPX;
http://upx.sourceforge.net), and
ASPack (www.aspack.com).
Crypters encrypt and obfuscate
the original file contents and
prevent the files from being un-
packed without any compression.
Malware developers widely use
crypters such as Yoda’s Crypter
(http://yodap.sourceforge.net/)
and PolyCrypt PE (www.jlab-
software.com).
Protectors combine features from
both compressors and crypters.
Some commercial protectors,
such as Armadillo (www.sili-
conrealms.com/) and Themida
(www.oreans.com), also include
comprehensive license-manage-
ment and antipiracy functions.
Bundlers pack a software package
of multiple executable and data
files into a single bundled exe-
cutable file, which unpacks and
accesses files within the package
without extracting them to disk.
Examples of typical PE bun-
dlers include PEBundle (www.
bitsum.com/pebundle.asp) and
MoleBox (www.molebox.com).

•

•

•

•

To perform packing, a packer
first parses PE internal structures.
Then, it reorganizes PE headers,
sections, import tables, and export
tables into new structures and at-
taches a code segment that the
malware will invoke before the
OEP. This code is called the stub,
and it decompresses the original
data and locates the OEP.

During packing, a packer com-
presses and encrypts the code and
resource sections using the com-
pression and encryption libraries. With
randomization, the packer can
also generate different variants of
a single file every time the file is
packed. For some powerful pack-
ers, the polymorphism engine also
adds a protection layer against RE
and debugging. Generally, when a
computer invokes a packed file, the
packer stub will first be invoked to
unpack the file in the memory,
and then the codes in the original
file will get executed. There are
several steps the stub engine needs
to follow:

save the register context at the
entry point (usually with a
PUSHA [push all general regis-
ters] instruction);
decrypt and decompress the
code and data sections;
load and link the libraries and

•

•

•

MS-DOS MZ header

PE header

PE optional header (data directory)

Section header

Section data

“PE”

Figure 1. PE file format. This format is used by Windows executables. It consists of the “PE”

signature, optional and section headers, and the section data.

Secure Systems

74	 IEEE Security & Privacy ■ September/October 2008

APIs that the original executable
imported;
restore the register context saved
at the entry point (usually with a
POPA [pop all general registers]
instruction); and
continue to execute the instruc-
tions at the OEP, usually with an
intersection jump instruction.

Another obfuscation technolo-
gy is API call redirection, which aims
to make an executable file smaller
and prevent it from running if a
security application doesn’t unpack
it correctly. To hide Windows API
function calls, a packer usually de-
stroys the original import table.
To unpack a packed file, the stub
decompresses the data, acquires
each API’s address, and rebuilds
the import table. Reconstructing
an import table scrambled by the
polymorphism code image is very
difficult. In addition, malware au-
thors have developed various anti-
unpacking techniques to prevent
packed files from being unpacked
and cracked, for example,

calculating the CRC checksum
of the packed executable file to
detect file patching;
inserting useless junk codes be-
tween the useful instructions to
fool a static decompiler;
triggering various exceptions to
detect dynamic debugging; or
redirecting and mutating the
original executable’s instructions
with different but equivalent ones
to prevent memory dumping.

Differences exist between a
self-extracting archived file and
a packed one. Users must extract
an archived file onto hard disks
before they can access it. So, AV
programs might still be able to de-
tect the “unarchived” temporary
files, even if they can’t unpack
the archived ones. (One popu-
lar archive tool on the Windows
platform is Winzip; www.win-
zip.com). On the other hand, a
packed file will be unpacked only

•

•

•

•

•

•

in memory, and users can’t stop its
execution once the file starts to
run. Thus, AV applications must
have a built-in functionality to
unpack the packed malware.

Unpacking malware
Because packing has become the
most common method for mal-
ware authors to obfuscate code,
it’s vital for security researchers
and AV products to be able to un-
pack and inspect payloads hidden
within packed programs.

Unpacking methods
Unpacking is the process of strip-
ping the packer layer (or layers)
off packed executables to restore
the original contents so that AV
programs and security research-
ers can inspect and analyze the
original executable signatures.
We can use three different tech-
niques to unpack a packed file:
manual unpacking, static unpacking,
or generic unpacking.

Security researchers and hack-
ers commonly use manual un-
packing to execute the packed
programs by using native debug-
gers—for example, SoftIce (www.
compuware.com) and Ollydbg
(www.ollydbg.de)—to analyze
the packer layers’ encryption and
decompression algorithms and
manually restore the original files.
This process is time consuming
and requires deep understanding
of kernel and assembly program-
ming, but with sufficient time and
knowledge, researchers can fully
reverse obfuscated viruses’ under-
lying logic and, interestingly, can
often discover nonobvious bugs
hidden within the programs. Ow-
ing to manual packings’ highly
skilled requirements and manual
nature, only knowledgeable re-
searchers within controlled envi-
ronments can carry it out.

To automate packer detection
in the field, AV programs usually
develop static unpackers, which
are dedicated routines to decom-
press/decrypt executables packed

by specific packers without actually
executing the suspicious programs.
Sample static unpackers include
Heaventools’ UPX and Upack un-
packer plugins (www.heaventools.
com/peexplorer-upack-unpacker.
htm). Static unpacking is very effi-
cient for unpacking files packed by
known packers, but virus devel-
opers can bypass them using un-
foreseen or custom packers. Thus,
generic unpacking—which uses
programs to execute or emulate
unknown packed executables until
they’re fully decrypted in mem-
ory—is becoming increasingly
important for AV providers want-
ing to decrypt unknown samples..
IDA Pro (www.datarescue.com/
idabase/index.htm) provides a de-
bugger-based universal unpacker,
which can unpack many simple
packers. Tobias Graf presented an
emulator-based generic unpacking
engine.4 Despite its flexibility and
potential, AV products don’t wide-
ly use generic unpacking, mainly
owing to complexities inherent
in implementing a secure and ef-
ficient generic unpacking engine,
and also because deciding when
the packed files are fully unpacked
is difficult.

Aside from some rare excep-
tions, most obfuscated programs
require an intersection long jump
to transit the execution flow from
the packer section to the section
containing OEP. If a generic un-
packing engine can capture the
intersection jumps, the AV engine
could use the following heuristics
to determine whether the OEP
has arrived:

Instruction pointer rule—IDA
Pro’s universal unpacker plugin
tracks the destination instruc-
tion pointer (referred to as EIP
for Intel IA32 processors) and
assumes that the OEP has been
reached once EIP falls within a
section located before the packer
layer and that the packed file has
been fully unpacked before the
OEP jumps.

•

Secure Systems

	 www.computer.org/security/ ■ IEEE Security & Privacy� 75

Stack pointer rule—to ensure that
the original executable executes
correctly, most packers will re-
store the stack level (referred to
as ESP for Intel IA32 processors)
to the value it had when the
packer codes start to execute.
Signature rule—Graf proposed
searching for popular compil-
ers’ entry signatures,4 for ex-
ample, Microsoft Visual C++,
GNU C++, or Delphi, whose
signatures are relatively static
among all executables these
compilers generate.
Behavior rule—Graf also proposed
stopping the OEP searching at
some Windows API functions,4
such as CreateWindowA, which
aren’t usually called by the pack-
er codes.

By applying these four rules
together, the generic unpacking
engine can reliably distinguish the
original executable codes from the
packer codes.

Unpacking UPack
UPack is a Windows-based com-
pression packer that compresses
PE-formatted files with very high
compression rates. Various viruses
and worms have used it to avoid
detection, such as W32/Zotob
(http://vil.nai.com/vil/content/v
135433.htm) and W32/Mytob
(http://vil.nai.com/vil/content/
v132158.htm). UPack uses a mod-
ified version of the Lempel-Ziv-
Markov algorithm (LZMA) as the
compression engine. A UPacked
file consists of two sections, “.Upa-
ck” and “.rsrc.” At the beginning
of the “.Upack” section is the out-
put data buffer for decompression
stub, followed by the import table
data. The “.rsrc” section contains
the compressed source data.

As Figure 2 shows, UPack’s
unpacking process involves four
consecutive steps: modified
LZMA decompression, E8/E9
decompression, import table re-
building, and jumping to OEP.
However, UPack changes LZMA

•

•

•

parameters to modify the normal
LZMA decoders without affect-
ing compression performance.
E8/E9 (jumping instructions)
decompression can increase the
compression ratio for some data
types, such as short jumps, which
can increase the compression ra-
tio by 5 to 10 percent. The im-
port table rebuilding and jumping
to OEP stages are similar to oth-
er packers. In the import table
building stage, UPack extracts
the DLL names, followed by the
trunk table addresses and APIs.
After that, UPack jumps to OEP.
For files with relocation tables,
UPack stores the Relative Virtual
Address (RVA) of the relocatable
data blocks, which will be relo-
cated when the relocation table
needs rebuilding. The UPacked
executables’ behavior meets the
EIP and ESP rules defined in the
previous sections. Thus, it’s rela-
tively easy for a generic unpack-
ing engine to accurately detect
the OEP.

Evolving packers
These days, more malware is
packed, and the AV industry has
witnessed malware’s shift in em-
phasis to virtual machine (VM)
protectors. VM protectors have
become the new generation of
packers. They convert assembly
instructions into bytecodes and
use VM to interpret those codes,
which are extremely difficult to
disassemble using traditional RE
tools. Every VM protector has a
different VM, which means AV
vendors have a hard time keeping
up with the new packers.

A VM protector normally in-
cludes a compiler, interpreter, and
handler. When packing, a protector
replaces the assembly codes with
its own bytecodes using the com-
piler, and so original codes of mal-
ware will never appear in the file.
During execution, the packed mal-
ware can execute the VM handler
via the bytecode interpreter. One
possible way to defeat VM protec-
tors is to divide them into function

PE header

Original entry point

LZMA decompression

E8/E9 decompression

Import table rebuilding

OEP jumping

Compressed data

Original
code section

.Upack section

.rsrc section

Entry point

Figure 2. UPack workflow. UPack stores the compressed data in the .rsrc section and

decompresses them into a new section using the Lempel-Ziv-Markov algorithm (LZMA). The

Upack section includes LZMA parameters and decompression codes.

Secure Systems

76	 IEEE Security & Privacy ■ September/October 2008

modules. For each module, securi-
ty researchers can compare the VM
context differences before and af-
ter that module’s execution. Then,
they can guess its function via both
static and dynamic analysis. The
major concern remains: Who has
the time to reverse all the byte-
codes given that security research-
ers are already preoccupied with a
large backlog of malware?

T oday’s AV industry devotes
much effort to combating

packed malware. Various new
emerging technologies let AV soft-
ware detect packers undergoing
modifications. At the same time,
however, hackers are launching un-
known malware, which most AV
software can’t detect. This trend
will continue into the future.

References
T. Brosch and M. Morgenstern, 1.

“Runtime Packers: The Hidden
Problem?” keynotes from Black
Hat USA 2006 Briefings and
Training, www.blackhat.com/
presentations/bh-usa-06/BH-US
-06-Morgenstern.pdf.
G. Szappanos, “Exepacker Black-
listing: Theory and Experiences,”
Proc. 2nd Int’l Computer AntiVirus
Researchers Organization Workshop,
(CARO), 2008; www.datasecurity
-event.com/uploads/gszappanos.ppt.
M. Pietrek, “Peering Inside the
PE: A Tour of the Win32 Por-
table Executable File Format,”
Microsoft Systems J., Mar. 1994,
pp. 15–34.
T. Graf, “Generic Unpack-
ing—How to Handle Modified
or Unknown PE Compression
Engines,” Proc. 2005 Virus Bulletin
Conf., Virus Bulletin, 2005.

Wei Yan is a senior threat researcher

in advanced threats research at Trend

Micro. His research interests include

2.

3.

4.

malware detection and classification,

signature automatic generation, and

intrusion detection. Yan has a PhD in

computer engineering from the New

Jersey Institute of Technology. He is a

member of the IEEE and Usenix. Con-

tact him at wei_yan@trendmicro.com.

Zheng Zhang is a research scientist in

AVERT Labs at McAfee. His research in-

terests include software unpacking and

decryption, malware sandboxing, and

network intrusion detection. Zhang has

a PhD in electrical engineering from the

New Jersey Institute of Technology. Con-

tact him at zzhang@avertlabs.com.

Nirwan Ansari is a professor of electri-

cal and computer engineering at the

New Jersey Institute of Technology. His

research interests include various as-

pects of broadband networks and mul-

timedia communications. Ansari has a

PhD in electrical engineering from Pur-

due University. Contact him at nirwan.

ansari@njit.edu.

